

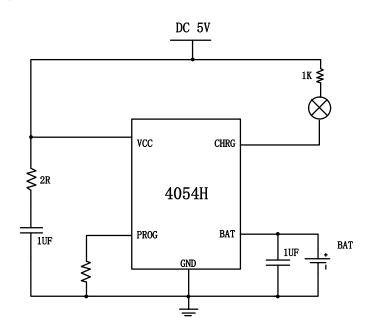
概述

4054H 一款输入耐压达 30V,具有电源 OVP 功能的 500mA 单节锂离子电池线性充电器,其采用了恒定电流/恒定电压的充电模式。

4054H 内部采用了 PMOSFET 架构,加防倒充电路,不需要外部隔离二极管。热反馈可对充电电流进行自适应调节,以便在大功率操作或高环境温度条件下对芯片充电电流加以限制。充满截止电压可以分为两档:4.2V,4.35V。而充电电流可通过一

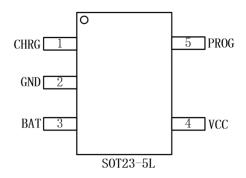
个电阻器进行外部设置。

当输入电压掉电后,4054H 自动进入一个低电流状态,电池漏电流降至 0.1uA 以下。4054H 的其他特点包括欠压闭锁、自动再充电和一个用于指示充电结束和输入电压接入的状态引脚。4054H 可以用于 USB 电源和适配器电源。


特点

- 输入电源端口极限耐压可达30V
- 输入电源电压6.8V时芯片OVP
- 30mA-500mA的可编程充电电流
- 采用恒定电流/恒定电压算法
- 精度达到±1%的预设充电电压
- 2.8V涓流充电阈值
- C/10充电终止
- 自动再充电
- 软启动限制了浪涌电流
- BAT反接保护
- 提供SOT23-5L封装

应用领域


- 电子烟
- 数码相机
- GPS便携式设备
- 各种充电器

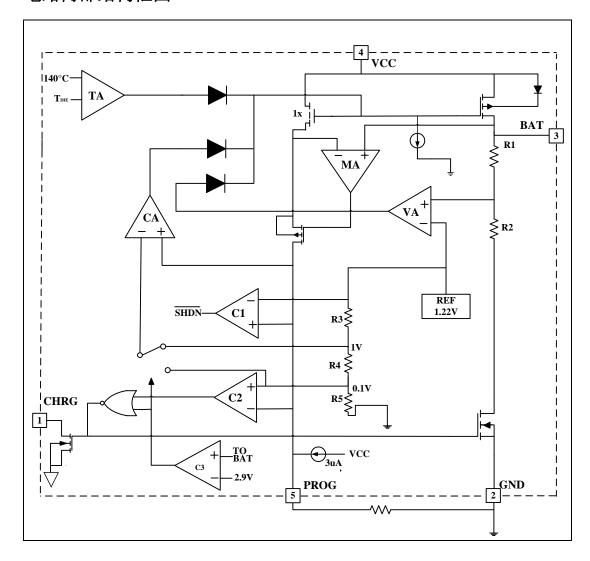
典型应用图

引脚定义与器件标识

订购信息

订购型号	封装形式	包装形式	产品丝印
4054H	SOT23-5L	编带 3000 颗/盘	4054H

管脚描述


SOT23-5	引脚名称	引脚功能	
1	CHRG	漏极开路输出的充电状态指示端	
2	GND	芯片参考地	
3	BAT	充电电流输出	
4	VCC	正输入电源电压	
5	PROG	充电电流设定、充电电流监控和停机引脚	

极限参数

符号	管脚	描述	参数范围	单位
VCC	4	输入电压	-0.3~30	V
CHRG	1	状态指示脚耐压	-0.3 ~30	V
BAT	3	电池两端耐压	-5 ∼10	V
PROG	5	PROG 引脚耐压	-0.3 ~6	V
T_{OP}		工作环境温度范围	-40 ~ +85	°C
T_{STG}		储存温度范围	-55 ∼ +150	°C
θ ја		PN 结到环境的热阻	240	°C/W

电路内部结构框图

4054H

单节锂电线性充电管理芯片

电气特性参数 (若无特殊说明, Ta=25℃)

符号	参数	条件	最小值	典型值	最大值	单位
Vcc	输入电源工作电压			5		V
V _{CC_MAX}	输入电源最大耐压				30	V
Vovp	输入电源 OVP 电压	从 Vcc 低至高		6.8		V
V _{OVP_HYS}	输入电源 OVP 迟滞电压			500		mV
		充电模式,R _{PROG} =10K		300		μΑ
T	怂 》 由源由溶	待机模式, 充电终止		100		μΑ
Icc	输入电源电流	停机模式 (R _{PROG} 未连接,		60		4
		$V_{CC} < V_{BAT} $ or $V_{CC} < V_{UV})$		60		μΑ
V	添大中口	00G AT 4050G	4.3	4.35	4.4	V
V _{FLOAL}	浮充电压	0°C≤T _A ≤85°C	4.158	4.2	4.242	V
		R _{PROG} =10K,电流模式		95		mA
	BAT 引脚电流:	R _{PROG} =1.8K, 电流模式		530		mA
I_{BAT}	(电流模式测试条件是	待机模式,V _{BAT} =V _{FLOAL}		-2	-6	μΑ
	$V_{BAT}=4.0V$)	停机模式(R _{PROG} 未连)		± 1	±2	μΑ
		睡眠模式,Vcc=0V		±1	±2	μΑ
I _{TRIKL}	涓流充电电流	V _{BAT} <v<sub>TRIKL R_{PROG}=1.8K</v<sub>		100		mA
V _{TRIKL}	涓流充电门限电压	R _{PROG} =10K, V _{BAT} 上升		2.85		V
V _{TRHYS}	涓流充电迟滞电压	R _{PROG} =1.8K		350		mV
V_{UV}	Vcc 欠压闭锁门限	从 VCC 低至高		3.8		V
V _{UVHYS}	Vcc 欠压闭锁迟滞			280		mV
$ m V_{ASD}$	Vcc-Vbat 闭锁门限电压	Vcc 从低到高		200		mV
V ASD	VCC-VBAI 阿顿门陀电压	Vcc 从高到低		100		mV
т	C/10 终止电流门限	R _{PROG} =10K		10		mA
I_{TERM}	0/10 公正电视门隙	R _{PROG} =1.8K		60		mA
V_{PROG}	PROG 引脚电压	R _{PROG} =1.8K, 电流模式	0.9	1.0	1.1	V
V _{CHRG}	CHRG 引脚输出低电压	I _{CHRG} =5mA		0.6		V
ΔV_{RECHRG}	再充电电池门限电压	V _{FLOAT} -V _{RECHRG}		100		mV
T_{LIM}	限定温度模式中的结温			140		°C
Ron	功率 FET 导通电阻	在 VCC 与 BAT 之间		1100		mΩ
Tss	软启动时间	I _{BAT} =0 至 I _{BAT} 设定值		20		μS
Trecharge	再充电比较器滤波时间	V _{BAT} 高至低		1		mS
Tterm	终止比较器滤波时间	IBAT 降至 ICHARGE/10 以下		2.5		mS
I _{PROG}	PROG 引脚上拉电流			0.3		μΑ

功能描述

4054H 是一款采用恒定电流/恒定电压算法的单节锂离子电池充电器。它能够提供 500mA 的充电电流。不仅如此,4054H 还能够从一个 USB 电源获得工作电源。

输入电源电压 OVP

4054H 具有输入电源电压 OVP 的功能,在 VCC 输入电压达到 6.8V 时,芯片 OVP 保护,此时芯片停机,停止向电池充电;当电源电压再从 6.8V 降低到约 6.3V 时,芯片重新进入工作状态。

充电电流设置

充电电流是采用一个连接在PROG引脚与地之间的电阻器来设定。客户应用中,可根据需求选取合适大小的 R_{PROG} 阻值。

RPROG 与充电电流的关系确定可参考下表:

R _{PROG} (KΩ)	I _{BAT} (mA)
30	28
10	95
5.1	190
2	480
1.8	530
1.6	600

充电终止

当充电电流在达到最终浮充电压之后降至设定值的 1/10 时,充电循环被终止。该条件是通过采用一个内部滤波比较器对 PROG 引脚进行监控来检测的。当 PROG 引脚电压降至100mV 以下的时间超过 T_{TERM}(一般为2.5ms)时,充电被终止。(注: C/10 终止在涓流充电和热限制模式中失效)。

充电时,BAT 引脚上的瞬变负载会使 PROG 引脚电压在 DC 充电电流降至设定值的 1/10 之间短暂地降至 100mV以下。一旦平均充电电流降至设定值的 1/10 以下,4054H 即终止充电循环并停止通过 BAT 引脚提供任何电流。在这种状态下,BAT 引脚上的所有负载都必须由电池来供电。在待机模式中,4054H 对 BAT 引脚电压进行连续监控。如果该引脚电压降到再充电电门限以下,则充电循环开始并再次向电池供应电流。

充电状态指示器

4054H有一个漏极开路状态指示输出端CHRG。当充电器处于充电状态时,CHRG被拉到低电平,在其它状态,CHRG处于高阻态。当电池连接端BAT管脚的外接电容为10uF时,CHRG闪烁周期约1-2秒。

热限制

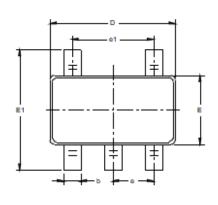
如果芯片温度试图升至约 140℃的 预设值以上,则一个内部热反馈环路 将减小设定的充电电流。该功能可防止 4054H 过热,并允许用户提高给定电路板功率处理能力的上限而没有损坏 4054H 的风险。在保证充电器将在最坏情况条件下自动减小电流的前提下,可根据典型(不是最坏情况)环境温度来设定充电电流。

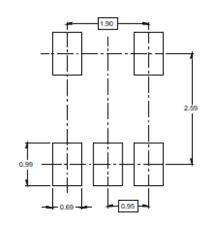
欠压闭锁

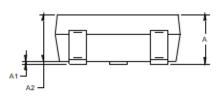
一个内部欠压闭锁电路对输入电压进行监控,并在 VCC 升至欠压闭锁门限以上之前使充电器保持在停机模式。如果 UVLO 比较器输出发生跳变,则在 VCC 升至比电池电压高 200mV之前充电器将不会退出停机模式。

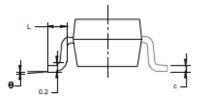
手动停机

在充电循环中的任何时刻都能通过去掉 R_{PROG} (从而使 PROG 引脚浮置)来把 4054H置于停机模式。这使得电池漏电流降至 0.1 μ A 以下,且电源电流降至 60 μ A 以下。重新连接电阻器可启动新的充电循环。


自动再启动


一旦充电循环被终止,4054H立即 采用一个具有 1ms 滤波时间的比较器 来对 BAT 引脚上的电压进行连续监控。 当电池电压降至 V_{RECHRG} 以下时,充电 循环重新开始。这确保了电池被维持 在(或接近)一个满充电状态,并免除 了进行周期性充电循环启动的需要。 在再充电循环过程中,CHRG 引脚输 出重新进入一个强下拉状态。




封装信息

S0T23-5L 封装外观尺寸图

Symbol	Dimensions In Millimeters		Dimensions In Inches		
- Cymbol	MIN	MAX	MIN	MAX	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	0.950 BSC		0.037 BSC	
e1	1.900 BSC		0.075 BSC		
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	